Search results for "PHOTONIC BAND-GAP"

showing 3 items of 3 documents

Dressed emitters as impurities

2021

Dressed states forming when quantum emitters or atoms couple to a photonic bath underpin a number of phenomena and applications, in particular dispersive effective interactions occurring within photonic bandgaps. Here, we present a compact formulation of the resolvent-based theory for calculating atom-photon dressed states built on the idea that the atom behaves as an effective impurity. This establishes an explicit connection with the standard impurity problem in condensed matter. Moreover, it allows us to formulate and settle in a model-independent context a number of properties previously known only for specific models or not entirely formalized. The framework is next extended to the cas…

Atom-photon bound states quantum optics waveguide-QEDQC1-999FOS: Physical sciencesContext (language use)ImpurityQuantum mechanicsBound statePhysics::Atomic Physicsquantum opticsElectrical and Electronic EngineeringQuantumResolventCommon emitterPhysicsQuantum Physicsphotonic band-gap materials; quantum optics; waveguide-QEDbusiness.industryphotonic band-gap materialsPhysicsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsConnection (mathematics)waveguide-qedPhotonicsbusinessQuantum Physics (quant-ph)Biotechnology
researchProduct

Surface plasmon subwavelength optics.

2003

International audience; Surface plasmons are waves that propagate along the surface of a conductor. By altering the structure of a metal's surface, the properties of surface plasmons- in particular their interaction with light-can be tailored, which offers the potential for developing new types of photonic device. This could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved. Surface plasmons are being explored for their potential in subwavelength optics, data storage, light generation, microscopy and bio-photonics.

Materials scienceNanophotonicsPhysics::OpticsExtraordinary optical transmission02 engineering and technologyFILMS01 natural sciences010309 opticsOptics[ PHYS.COND.CM-MSQHE ] Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]0103 physical sciences2ND-HARMONIC GENERATIONPlasmonic lensLOCAL DETECTION[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]Photonic crystalHOLE ARRAYSMultidisciplinarybusiness.industrySurface plasmonENERGY GAPSPlasmonic CircuitryMETALLIC NANOPARTICLES021001 nanoscience & nanotechnologySurface plasmon polaritonLIGHT TRANSMISSIONGOLD NANOPARTICLES[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicOptoelectronics[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicENHANCED RAMAN-SCATTERINGPHOTONIC BAND-GAP0210 nano-technologybusinessLocalized surface plasmonNature
researchProduct

Quantum enhancement of qutrit dynamics through driving field and photonic-band-gap crystal

2022

A comparative study of a qutrit (three-level atomic system) coupled to a classical field in a typical Markovian reservoir (free space) and in a photonic band-gap (PBG) crystal is carried out. The aim of the study is to assess the collective impact of structured environment and classical control of the system on the dynamics of quantum coherence, non-Markovianity, and estimation of parameters which are initially encoded in the atomic state. We show that the constructive interplay of PBG material as a medium and classical driving field as a part of system results in a significant enhancement of all the quantum traits of interest, compared to the case when the driven qutrit is in a Markovian e…

QutritQuantum PhysicsQuantum Fisher InformationPhotonic Crystals: Photonic Band-Gap MaterialFOS: Physical sciencesNon-MarkovianityQuantumness ProtectionQuantum Physics (quant-ph)Settore FIS/03 - Fisica Della MateriaPhysical Review A
researchProduct